WDVV-like equations in = 2 SUSY Yang-Mills theory

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More Evidence for the WDVV Equations in N=2 SUSY Yang-Mills Theories

We consider 4d and 5d N = 2 supersymmetric theories and demonstrate that in general their SeibergWitten prepotentials satisfy the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. General proof for the Yang-Mills models (with matter in the first fundamental representation) makes use of the hyperelliptic curves and underlying integrable systems. A wide class of examples is discussed, it conta...

متن کامل

WDVV equations for pure Super-Yang-Mills theory

In the literature, there are two proofs [MMM] [IY98] that the prepotential of N = 2 pure Super-Yang-Mills theory satisfies the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. We show that these two methods are in fact equivalent. MSC Subj. Class. 2000: 14H15, 81T60

متن کامل

One-Instanton Prepotentials From WDVV Equations in N = 2 Supersymmetric SU(4) Yang-Mills Theory

Prepotentials in N = 2 supersymmetric Yang-Mills theories are known to obey non-linear partial differential equations called Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. In this paper, the prepotentials at one-instanton level in N = 2 supersymmetric SU(4) Yang-Mills theory are studied from the standpoint of WDVV equations. Especially, it is shown that the one-instanton prepotentials are...

متن کامل

Nonperturbative Relations in N=2 Susy Yang-mills and Wdvv Equation

We obtain the nonperturbative relation v = ± 2 3 √ 3 u + cΛF12 + dΛ. This relation gives 〈trφ3〉 in terms of the prepotential F and the vevs 〈φi〉 in N = 2 SYM with gauge group SU(3). We also obtain the nonlinear differential equations satisfied by F and show that these include the Witten – Dijkgraaf – Verlinde – Verlinde equation. The method we propose can be generalized to higher rank groups. P...

متن کامل

WDVV equations for F 4 pure N = 2 Super - Yang - Mills theory

An associative algebra of holomorphic differential forms is constructed associated with pure N=2 Super-Yang-Mills theory for the Lie algebra F4. Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the prepotential of this theory satisfies the generalized WDVV system.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters B

سال: 1996

ISSN: 0370-2693

DOI: 10.1016/s0370-2693(96)01231-2